
f11 – Sparse Linear Algebra f11jcc

nag sparse sym chol sol (f11jcc)

1. Purpose

nag sparse sym chol sol (f11jcc) solves a real sparse symmetric system of linear equations,
represented in symmetric coordinate storage format, using a conjugate gradient or Lanczos method,
with incomplete Cholesky preconditioning.

2. Specification

#include <nag.h>
#include <nagf11.h>

void nag_sparse_sym_chol_sol(Nag_SparseSym_Method method, Integer n,
Integer nnz, double a[], Integer la, Integer irow[],
Integer icol[], Integer ipiv[], Integer istr[], double b[],
double tol, Integer maxitn, double x[], double *rnorm,
Integer *itn, Nag_Sparse_Comm *comm, NagError *fail)

3. Description

This routine solves a real sparse symmetric linear system of equations:

Ax = b,

using a preconditioned conjugate gradient method (Meijerink and van der Vorst (1977)), or a
preconditioned Lanczos method based on the algorithm SYMMLQ (Paige and Saunders (1975)).
The conjugate gradient method is more efficient if A is positive-definite, but may fail to converge
for indefinite matrices. In this case the Lanczos method should be used instead. For further details
see Barrett et al. (1994).

nag sparse sym chol sol uses the incomplete Cholesky factorization determined by
nag sparse sym chol fac (f11jac) as the preconditioning matrix. A call to nag sparse sym chol sol
must always be preceeded by a call to nag sparse sym chol fac (f11jac). Alternative preconditioners
for the same storage scheme are available by calling nag sparse sym sol (f11jec).

The matrix A, and the preconditioning matrix M , are represented in symmetric coordinate storage
(SCS) format (see Section 2.1.2. of the Chapter Introduction) in the arrays a, irow and icol, as
returned from nag sparse sym chol fac (f11jac). The array a holds the non-zero entries in the lower
triangular parts of these matrices, while irow and icol hold the corresponding row and column
indices.

4. Parameters

method
Input: specifies the iterative method to be used. The possible choices are:

if method = Nag SparseSym CG then the conjugate gradient method is used;

if method = Nag SparseSym Lanczos then the Lanczos method, SYMMLQ is used.
Constraint: method = Nag SparseSym CG or Nag SparseSym Lanczos.

n
Input: the order of the matrix A. This must be the same value as was supplied in the
preceding call to nag sparse sym chol fac (f11jac).
Constraint: n ≥ 1.

nnz
Input: the number of non-zero elements in the lower triangular part of the matrix A. This
must be the same value as was supplied in the preceding call to nag sparse sym chol fac
(f11jac).
Constraint: 1 ≤ nnz ≤ n × (n+1)/2.

[NP3275/5/pdf] 3.f11jcc.1

nag sparse sym chol sol NAG C Library Manual

a[la]
Input: the values returned in array a by a previous call to nag sparse sym chol fac (f11jac).

la
Input: the dimension of the arrays a, irow and icol, this must be the same value as returned
by a previous call to nag sparse sym chol fac (f11jac).
Constraint: la ≥ 2 × nnz.

irow[la]

icol[la]

ipiv[n]

istr[n+1]
Input: the values returned in the arrays irow, icol, ipiv and istr by a previous call to
nag sparse sym chol fac (f11jac).

b[n]
Input: the right-hand side vector b.

tol
Input: the required tolerance. Let xk denote the approximate solution at iteration k, and rk

the corresponding residual. The algorithm is considered to have converged at iteration k if:

‖rk‖∞ ≤ τ × (‖b‖∞ + ‖A‖∞‖xk‖∞).

If tol ≤ 0.0, τ = max(
√

ε,
√

n ε) is used, where ε is the machine precision. Otherwise
τ = max(tol, 10ε,

√
n ε) is used.

Constraint: tol < 1.0.

maxitn
Input: the maximum number of iterations allowed.
Constraint: maxitn ≥ 1.

x[n]
Input: an initial approximation to the solution vector x.
Output: an improved approximation to the solution vector x.

rnorm
Output: the final value of the residual norm ‖rk‖∞, where k is the output value of itn.

itn
Output: the number of iterations carried out.

comm
Input/Output: a pointer to a structure of type Nag Sparse Comm whose members are used
by the iterative solver.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter method had an illegal value.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.
On entry, maxitn must not be less than 1: maxitn = 〈value〉.

NE INT 2
On entry, nnz = 〈value〉, n = 〈value〉.
Constraint: 1 ≤ nnz ≤ n × (n+1)/2.

NE REAL ARG GE
On entry, tol must not be greater than or equal to 1.0: tol = 〈value〉.

3.f11jcc.2 [NP3275/5/pdf]

f11 – Sparse Linear Algebra f11jcc

NE 2 INT ARG LT
On entry, la = 〈value〉 while nnz = 〈value〉.
These parameters must satisfy la ≥ 2 × nnz.

NE INVALID SCS
The SCS representation of the matrix A is invalid. Check that the call to
nag sparse sym chol sol has been preceded by a valid call to nag sparse sym chol fac (f11jac),
and that the arrays a, irow and icol have not been corrupted between the two calls.

NE INVALID SCS PRECOND
The SCS representation of the preconditioning matrix M is invalid. Check that the call to
nag sparse sym chol sol has been preceded by a valid call to nag sparse sym chol fac (f11jac),
and that the arrays a, irow, icol, ipiv and istr have not been corrupted between the two calls.

NE PRECOND NOT POS DEF
The preconditioner appears not to be positive-definite.

NE COEFF NOT POS DEF
The matrix of coefficients appears not to be positive-definite.

NE ACC LIMIT
The required accuracy could not be obtained. However, a reasonable accuracy has been
obtained and further iterations cannot improve the result.

NE NOT REQ ACC
The required accuracy has not been obtained in maxitn iterations.

NE ALLOC FAIL
Memory allocation failed.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments
The time taken by nag sparse sym chol sol for each iteration is roughly proportional to the value
of nnzc returned from the preceding call to nag sparse sym chol fac (f11jac). One iteration with
the Lanczos method (SYMMLQ) requires a slightly larger number of operations than one iteration
with the conjugate gradient method.

The number of iterations required to achieve a prescribed accuracy cannot be easily determined
a priori, as it can depend dramatically on the conditioning and spectrum of the preconditioned
matrix of the coefficients Ā = M−1A.

Some illustrations of the application of nag sparse sym chol sol to linear systems arising from
the discretization of two-dimensional elliptic partial differential equations, and to random-valued
randomly structured symmetric positive-definite linear systems, can be found in Salvini and Shaw
(1995).

6.1. Accuracy

On successful termination, the final residual rk = b−Axk, where k = itn, satisfies the termination
criterion

‖rk‖∞ ≤ τ × (‖b‖∞ + ‖A‖∞‖xk‖∞).

The value of the final residual norm is returned in rnorm.

6.2. References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C
and van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods SIAM, Philadelphia.

Meijerink J and van der Vorst H (1977) An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162.

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM
J. Numer. Anal. 12 617–629.

Salvini S A and Shaw G J (1995) An evaluation of new NAG Library solvers for large sparse
symmetric linear systems NAG Technical Report TR1/95, NAG Ltd, Oxford.

[NP3275/5/pdf] 3.f11jcc.3

nag sparse sym chol sol NAG C Library Manual

7. See Also

nag sparse sym chol fac (f11jac)
nag sparse sym sol (f11jec)
nag sparse sym sort (f11zbc)

8. Example

This example program solves a symmetric positive-definite system of equations using the conjugate
gradient method, with incomplete Cholesky preconditioning.

8.1. Program Text

/* nag_sparse_sym_chol_sol (f11jcc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagf11.h>

main()
{
double dtol;
double *a=0, *b=0;
double *x=0;
double rnorm, dscale;
double tol;

Integer *icol=0;
Integer *ipiv=0, nnzc, *irow=0, *istr=0;
Integer i;
Integer n;
Integer lfill, npivm;
Integer maxitn;
Integer itn;
Integer nnz;
Integer num;

Nag_SparseSym_Method method;
Nag_SparseSym_Piv pstrat;
Nag_SparseSym_Fact mic;
Nag_Sparse_Comm comm;

char char_enum[20];

Vprintf("f11jcc Example Program Results\n");

/* Skip heading in data file */
Vscanf(" %*[^\n]");

/* Read algorithmic parameters */
Vscanf("%ld%*[^\n]",&n);
Vscanf("%ld%*[^\n]",&nnz);
Vscanf("%ld%lf%*[^\n]",&lfill, &dtol);
Vscanf("%s%*[^\n]",char_enum);
if (!strcmp(char_enum, "CG"))

method = Nag_SparseSym_CG;
else if (!strcmp(char_enum, "Lanczos"))

method = Nag_SparseSym_Lanczos;
else

{
Vprintf("Unrecognised string for method enum representation.\n");
exit (EXIT_FAILURE);

}

3.f11jcc.4 [NP3275/5/pdf]

f11 – Sparse Linear Algebra f11jcc

Vscanf("%s%lf%*[^\n]",char_enum, &dscale);
if (!strcmp(char_enum, "ModFact"))

mic = Nag_SparseSym_ModFact;
else if (!strcmp(char_enum, "UnModFact"))

mic = Nag_SparseSym_UnModFact;
else

{
Vprintf("Unrecognised string for mic enum representation.\n");
exit (EXIT_FAILURE);

}

Vscanf("%s%*[^\n]",char_enum);
if (!strcmp(char_enum, "NoPiv"))

pstrat = Nag_SparseSym_NoPiv;
else if (!strcmp(char_enum, "MarkPiv"))

pstrat = Nag_SparseSym_MarkPiv;
else if (!strcmp(char_enum, "UserPiv"))

pstrat = Nag_SparseSym_UserPiv;
else

{
Vprintf("Unrecognised string for pstrat enum representation.\n");
exit (EXIT_FAILURE);

}

Vscanf("%lf%ld%*[^\n]",&tol, &maxitn);

/* Read the matrix a */

num = 2 * nnz;
irow = NAG_ALLOC(num,Integer);
icol = NAG_ALLOC(num,Integer);
a = NAG_ALLOC(num,double);
b = NAG_ALLOC(n,double);
x = NAG_ALLOC(n,double);
istr = NAG_ALLOC(n+1,Integer);
ipiv = NAG_ALLOC(num,Integer);

if (!irow || !icol || !a || !x || !istr ||!ipiv)
{
Vprintf("Allocation failure\n");
exit (EXIT_FAILURE);

}

for (i = 1; i <= nnz; ++i)
Vscanf("%lf%ld%ld%*[^\n]",&a[i-1], &irow[i-1], &icol[i-1]);

/* Read right-hand side vector b and initial approximate solution x */

for (i = 1; i <= n; ++i)
Vscanf("%lf",&b[i-1]);

Vscanf(" %*[^\n]");

for (i = 1; i <= n; ++i)
Vscanf("%lf",&x[i-1]);

Vscanf("%*[^\n]");

/* Calculate incomplete Cholesky factorization */

f11jac(n, nnz, &a, &num, &irow, &icol, lfill, dtol, mic,
dscale, pstrat, ipiv, istr, &nnzc, &npivm, &comm, NAGERR_DEFAULT);

/* Solve Ax = b */

f11jcc(method, n, nnz, a, num, irow, icol, ipiv, istr, b,
tol, maxitn, x, &rnorm, &itn, &comm, NAGERR_DEFAULT);

Vprintf(" %s%10ld%s\n","Converged in",itn," iterations");
Vprintf(" %s%16.3e\n","Final residual norm =",rnorm);

[NP3275/5/pdf] 3.f11jcc.5

nag sparse sym chol sol NAG C Library Manual

/* Output x */

for (i = 1; i <= n; ++i)
Vprintf(" %16.4e\n",x[i-1]);

NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(ipiv);
NAG_FREE(istr);
exit (EXIT_SUCCESS);

}

8.2. Program Data

f11jcc Example Program Data
7 n
16 nnz
1 0.0 lfill, dtol
CG method
UnModFact 0.0 mic dscale
MarkPiv pstrat
1.0e-6 100 tol, maxitn
4. 1 1
1. 2 1
5. 2 2
2. 3 3
2. 4 2
3. 4 4
-1. 5 1
1. 5 4
4. 5 5
1. 6 2
-2. 6 5
3. 6 6
2. 7 1
-1. 7 2
-2. 7 3
5. 7 7 a[i-1], irow[i-1], icol[i-1], i=1,...,nnz
15. 18. -8. 21.
11. 10. 29. b[i-1], i=1,...,n
0. 0. 0. 0.
0. 0. 0. x[i-1], i=1,...,n

8.3. Program Results

f11jcc Example Program Results
Converged in 1 iterations
Final residual norm = 7.105e-15

1.0000e+00
2.0000e+00
3.0000e+00
4.0000e+00
5.0000e+00
6.0000e+00
7.0000e+00

3.f11jcc.6 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

